Rigid animals in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L791
(http://iopscience.iop.org/0305-4470/22/16/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Rigid animals in three dimensions

Jian Wang $\dagger \ddagger$ and Jin Wang§
\dagger Department of Chemistry, Brandeis University, Waltham, MA 02254, USA § Electrical Engineering and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received 9 June 1989

Abstract

The number of rigid clusters $C(n)$ is enumerated for the central force model on a site-diluted FCC lattice. The exponent ν_{r} governing the growth of the radius of gyration of the rigid animal is also calculated. It is found that $C(n) \sim n^{0.33} 3.0^{\prime \prime}$ and $\nu_{\mathrm{r}}=0.32 \pm 0.02$.

The randomly diluted elastic network has been studied extensively over the past five years [1-6]. For the bond bending model [2], the rigidity threshold is the same as the percolation threshold and the bulk modulus exponent f is much larger than the conductivity exponent t. The relation $f=2 \nu+t$ has been conjectured [6-9] (ν is the correlation length exponent) which agrees very well with numerical estimates in two dimensions. The central force model [1], on the other hand, has a rigidity threshold much larger than the percolation threshold because there is only one elastic constant in this model. As a result, the rigidity of the central force model is non-local [5] in the sense that two sites may not be rigidly connected even though they are connected. It is currently believed that the central force model and the bond bending model belong to different universality classes. Due to the non-local property of the central force model, the number of rigid clusters is much less than the number of connected clusters. The rigid animal has been studied [10-12] on a triangular lattice, assuming that the number of rigid clusters $C(n)$ and the mean-square radius of gyration with respect to the centre of mass ρ_{n} of the cluster having n sites obey the following scaling form:

$$
\begin{align*}
& C(n) \sim n^{-\theta_{r}} \lambda^{n} \tag{1}\\
& \rho_{n}=\frac{1}{C(n)} \sum_{\gamma_{n}} R_{n}^{2}\left(\gamma_{n}\right) \sim n^{2 \nu_{r}} \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{R}_{n}^{2}=\frac{1}{n} \sum_{i}\left(\boldsymbol{r}_{\mathrm{i}}-\boldsymbol{r}_{\mathrm{c}}\right)^{2} \tag{3}
\end{equation*}
$$

Here r_{i} is the position vector of site i, r_{c} is the vector of the centre of mass of the rigid cluster, γ_{n} denotes all rigid clusters having n sites, θ_{r} is a critical exponent, and ν_{r} is the correlation length exponent for the rigid animal. The calculations of Prunet and Blanc [10] and Wang [11, 12] give $\theta_{\mathrm{rs}}=0.57 \pm 0.02, \nu_{\mathrm{rs}}=0.744 \pm 0.008$ for site dilution,
and $\theta_{\mathrm{rb}}=0.988 \pm 0.001$ for bond dilution. Note that the bond rigid animal and the site rigid animal belong to different universality classes. The same conclusion has been drawn [13] for the elastic property of the site and bond rigidity percolation for the central force model.

In this letter, we enumerate the site rigid animal and the radius of gyration up to p^{14} on a FCC lattice, which is a non-trivial task. Note that the enumeration of the lattice animal on the FCC lattice up to p^{10} already took about two hours of CPU time on an Apollo AD 4500 work station (which is a little slower than a VAX 8650). The computing time of the next order would be at least ten times as long than that of the previous order. Using a partial enumeration method [12] based on Martin's backtracking technique [14,15], it took 46 hours of cPU time on the Apollo AD 4500 to complete the enumeration of the rigid animal and the radius of gyration. For a site cluster, there is a spring associated with any two nearest-neighbour sites. A cluster is considered to be rigid provided that the number of zero frequency modes N equals $d(d+1) / 2$, corresponding to d translational and $d(d-1) / 2$ rotational degrees of freedom. For every cluster generated by the partial enumeration method, we first calculate the quantity id $=3 \times(n s)-(n b)-6$. If id >0, then the cluster is non-rigid in three dimensions. Note that if id $\leqslant 0$ it is not necessarily rigid.

The series χ_{1} and χ_{2} are defined as

$$
\begin{align*}
& \chi_{1}=\sum_{n} C(n) K^{n} \sim(1-\lambda K)^{\theta_{r}-1} \tag{4}\\
& \chi_{2}=\sum_{n} C(n) n \rho_{n} K^{n} \sim \sum_{n} n^{-\theta_{r}+1} \lambda^{n} n^{2 \nu_{r}} K^{n} \sim(1-\lambda K)^{\theta_{r}-2 \nu_{r}-2} \tag{5}
\end{align*}
$$

where K is the fugacity and $K_{c}=1 / \lambda$ is the critical value of K.
The series coefficients are listed in table 1 , where c_{n} is the rigid animal and d_{n} is the radius of gyration multiplied by the number of sites n. We also listed the ordinary animals a_{n} and the number of clusters b_{n} generated by our method for comparison. We used the Padé approximant and the differential Padé approximant [16] to estimate the exponents θ_{r} and ν_{r}. To get an accurate value of ν_{r}, we obtained another series [17] $\chi_{3}=\Sigma_{n} n \rho_{n} K^{n} \sim(1-K)^{-\alpha}$, which is the quotient of χ_{2} and χ_{1} expanded term by term, where $\alpha=2 \nu_{\mathrm{r}}+2$. Then the critical point for this series is exactly 1 , from which

Table 1. The coefficients of the series for the FCC lattice.

n	a_{n}	b_{n}	c_{n}	d_{n}
1	1	1	1	0.00
2	6	6	6	3.00
3	50	15	8	8.00
4	475	20	2	3.00
5	4881	114	0	0.00
6	52835	371	1	3.00
7	593382	2467	8	34.29
8	6849415	18048	28	159.00
9	80757819	121405	80	570.67
10	968400940	756734	268	2346.63
11		4528943	887	9310.84
12		27153877	2855	35280.62
13		163421791	9070	130530.60
14	971979472	28516	473690.40	

we obtained the exponent ν_{r}. Using this value, we analysed the series χ_{1} and χ_{2} and computed the critical point K_{c} and critical exponent θ_{r}. We obtained $\nu_{\mathrm{r}}=0.32 \pm 0.02$, which can be compared with the correlation length exponent for the lattice animal $\nu=0.53 \pm 0.02$ [18] and $\nu=0.51$ [19]. Note that ν is larger than ν_{r} in three dimensions, in contrast to the situation in two dimensions where ν is smaller than ν_{r}. We also obtained $\theta_{\mathrm{r}}=-0.33 \pm 0.08$ and $K_{\mathrm{c}}=0.33 \pm 0.01$. The ratio method has been used to analyse the series and the results are consistent with the above analysis.

In summary, we have enumerated rigid animals on a FCC lattice and calculated the exponent of the radius of gyration for the site rigid animal which is found to be smaller than that of the lattice animal.

We would like to thank Dr R Kozack for careful reading of this manuscript. We thank University of Illinois for computational facilities. Jian Wang thanks the NIH for support under grant no 4-60357.

References

[1] Feng S and Sen P N 1984 Phys. Rev. Lett. 52216
[2] Kantor Y and Webman I 1984 Phys. Rev. Lett. 521891
[3] Lemieux M A, Breton P and Tremblay A M S 1985 J. Physique Lett. 46 L1
[4] Wang J and Harris A B 1985 Phys. Rev. Lett. 552459
[5] Day A R, Tremblay R R and Tremblay A M S 1986 Phys. Rev. Lett. 562501
[6] Feng S, Sen P N, Halperin B I and Lobb C J 1984 Phys. Rev. B 305386
[7] Roux S 1986 J. Phys. A: Math. Gen. 19 L351
[8] Sahimi M 1986 J. Phys. C: Solid State Phys. 19 L79
[9] Harris A B and Lubensky T C 1986 unpublished
[10] Prunet V and Blanc R 1986 J. Phys. A: Math. Gen. 19 L1197
[11] Wang J 1988 J. Phys. A: Math. Gen. 21 L353
[12] Wang J 1989 An algorithm for enumerating rigid animals J. Phys. A: Math. Gen. 22 in press
[13] Arbabi S and Sahimi M 1988 J. Phys. A: Math. Gen. 21 L863
[14] Martin J L 1972 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic) p 97
[15] Redner S 1982 J. Stat. Phys. 29309
[16] Chen J-H and Fisher M E 1981 J. Phys. A: Math. Gen. 142553
[17] Meir Y 1987 J. Phys. A: Math. Gen. 20 L349
[18] Gould H and Holl K 1981 J. Phys. A: Math. Gen. 14 L443
[19] Family F 1983 J. Phys. A: Math. Gen. 16 L97

